Jupyter Notebook Binder

Query individual files#

scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.

Here, weโ€™ll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
๐Ÿ’ก loaded instance: testuser1/test-scrna (lamindb 0.54.3)
ln.track()
๐Ÿ’ก notebook imports: anndata==0.9.2 lamindb==0.54.3 lnschema_bionty==0.31.2
๐Ÿ’ก Transform(id='agayZTonayqAz8', name='Query individual files', short_name='scrna2', version='0', type=notebook, updated_at=2023-09-29 14:46:36, created_by_id='DzTjkKse')
๐Ÿ’ก Run(id='kJNEKVsuf6S5JDofFIgB', run_at=2023-09-29 14:46:36, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')

Access #

Query files by provenance metadata#

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
id __ratio__
name
scRNA-seq Nv48yAceNSh8z8 90.0
Append a new batch of data ManDYgmftZ8Cz8 36.0
Query individual files agayZTonayqAz8 36.0
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
nV0w72HVEfJeK6lgb7BO 975nKuX0 None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Pd5UweAXC3cCH1aOMdr1 None 2023-09-29 14:45:51 DzTjkKse

Query files based on biological metadata#

assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,
    species=species.human,
    cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
Vf6s6oe8cTQ8oqMCCjeT 975nKuX0 None .h5ad AnnData 10x reference adata None 660792 a2V0IgOjMRHsCeZH169UOQ md5 ManDYgmftZ8Cz8 0eCAXKvC5AGTwRu42M0X None 2023-09-29 14:46:24 DzTjkKse
nV0w72HVEfJeK6lgb7BO 975nKuX0 None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Pd5UweAXC3cCH1aOMdr1 None 2023-09-29 14:45:51 DzTjkKse

Transform #

Compare gene sets#

Get file objects:

query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(id='nV0w72HVEfJeK6lgb7BO', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-09-29 14:45:51)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='975nKuX0', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-29 14:44:56, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-29 14:45:51, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='Pd5UweAXC3cCH1aOMdr1', run_at=2023-09-29 14:44:58, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-29 14:44:56)
  โฌ‡๏ธ input_of (core.Run): ['2023-09-29 14:45:55']
Features:
  var: FeatureSet(id='EJQhGDAUMVCAW7a878Is', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-09-29 14:45:40, modality_id='Tkw6vO00', created_by_id='DzTjkKse')
    'KRT4', 'LHX5-AS1', 'OPN1LW', 'STYX', 'CCDC158', 'None', 'None', 'MKNK1-AS1', 'None', 'None', 'LNPEP', 'LINC02485', 'None', 'None', 'IGHEP2', 'CYFIP1', 'A4GNT', 'SLC14A2', 'None', 'None', ...
  obs: FeatureSet(id='KEEZXO20pmTjLPROaTDE', n=4, registry='core.Feature', hash='NUCABLKrrAle7o2cv7hj', updated_at=2023-09-29 14:45:45, modality_id='jUAc2M1C', created_by_id='DzTjkKse')
    ๐Ÿ”— donor (12, core.ULabel): '621B', '640C', 'D496', 'A52', 'A36', '582C', 'A29', 'D503', 'A37', 'A31', ...
    ๐Ÿ”— cell_type (32, bionty.CellType): 'progenitor cell', 'T follicular helper cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'CD8-positive, alpha-beta memory T cell, CD45RO-positive', 'classical monocyte', 'regulatory T cell', 'group 3 innate lymphoid cell', 'CD4-positive helper T cell', 'non-classical monocyte', ...
    ๐Ÿ”— assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v2', '10x 3' v3', '10x 5' v1'
    ๐Ÿ”— tissue (17, bionty.Tissue): 'mesenteric lymph node', 'lung', 'sigmoid colon', 'thymus', 'lamina propria', 'bone marrow', 'ileum', 'jejunal epithelium', 'spleen', 'thoracic lymph node', ...
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ tissues (17, bionty.Tissue): 'mesenteric lymph node', 'lung', 'sigmoid colon', 'thymus', 'lamina propria', 'bone marrow', 'ileum', 'jejunal epithelium', 'spleen', 'thoracic lymph node', ...
  ๐Ÿท๏ธ cell_types (32, bionty.CellType): 'progenitor cell', 'T follicular helper cell', 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'CD8-positive, alpha-beta memory T cell, CD45RO-positive', 'classical monocyte', 'regulatory T cell', 'group 3 innate lymphoid cell', 'CD4-positive helper T cell', 'non-classical monocyte', ...
  ๐Ÿท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v2', '10x 3' v3', '10x 5' v1'
  ๐Ÿท๏ธ ulabels (12, core.ULabel): '621B', '640C', 'D496', 'A52', 'A36', '582C', 'A29', 'D503', 'A37', 'A31', ...
file1.view_flow()
https://d33wubrfki0l68.cloudfront.net/e56d119d4145929bec2920c04c78c96c38c9e500/666e5/_images/b02d47ec30b1e9abf438735cde6c22495a2e98263361fa7bb9338c2dc4bf111d.svg
file2.describe()
File(id='Vf6s6oe8cTQ8oqMCCjeT', suffix='.h5ad', accessor='AnnData', description='10x reference adata', size=660792, hash='a2V0IgOjMRHsCeZH169UOQ', hash_type='md5', updated_at=2023-09-29 14:46:24)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='975nKuX0', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-29 14:44:56, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='ManDYgmftZ8Cz8', name='Append a new batch of data', short_name='scrna1', version='0', type='notebook', updated_at=2023-09-29 14:46:25, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='0eCAXKvC5AGTwRu42M0X', run_at=2023-09-29 14:45:55, transform_id='ManDYgmftZ8Cz8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-29 14:44:56)
Features:
  var: FeatureSet(id='9ZyNwE85EcgUEwAEUkkJ', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-09-29 14:46:24, modality_id='Tkw6vO00', created_by_id='DzTjkKse')
    'COMMD5', 'MTPN', 'TNFRSF4', 'ANKRD12', 'IL32', 'MATK', 'EIF3G', 'JAML', 'SERPINF1', 'MARCKSL1', 'COA1', 'IGHA1', 'ATP5MF', 'TXN', 'UQCRC1', 'HNRNPK', 'CRIP1', 'SDHC', 'PSMC5', 'S1PR4', ...
  obs: FeatureSet(id='UCZgzCGfvvQjnHbb8ywh', n=1, registry='core.Feature', hash='a0witEZwk8c1sJvQ0-Vg', updated_at=2023-09-29 14:46:24, modality_id='jUAc2M1C', created_by_id='DzTjkKse')
    ๐Ÿ”— cell_type (9, bionty.CellType): 'gamma-delta T cell', 'B cell, CD19-positive', 'CD4-positive, alpha-beta T cell', 'cytotoxic T cell', 'dendritic cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'monocyte', 'CD24-positive, CD4 single-positive thymocyte'
  external: FeatureSet(id='9szxE5HWrIb4E8kRB5mJ', n=2, registry='core.Feature', hash='Va1p2Yt0XUK6Qju8q27m', updated_at=2023-09-29 14:46:24, modality_id='jUAc2M1C', created_by_id='DzTjkKse')
    ๐Ÿ”— assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
    ๐Ÿ”— species (1, bionty.Species): 'human'
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ cell_types (9, bionty.CellType): 'gamma-delta T cell', 'B cell, CD19-positive', 'CD4-positive, alpha-beta T cell', 'cytotoxic T cell', 'dendritic cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD16-positive, CD56-dim natural killer cell, human', 'monocyte', 'CD24-positive, CD4 single-positive thymocyte'
  ๐Ÿท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
https://d33wubrfki0l68.cloudfront.net/1d1c2f24c076cc64ca65919dd8a057fc15edd89a/9f607/_images/6ac07902e3fee97339f9c9ba281dcc06554a79ed5641fccc86c1aed659a7916b.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['ARF6',
 'TOMM7',
 'U2AF1',
 'NOSIP',
 'GOPC',
 'SLC3A2',
 'ATP5ME',
 'ACAA1',
 'MFSD14B',
 'CYTL1']

Compare cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['gamma-delta T cell', 'CD16-positive, CD56-dim natural killer cell, human']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subsetted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร— n_vars = 187 ร— 749
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file               
CD16-positive, CD56-dim natural killer cell, human  Conde22                114
gamma-delta T cell                                  Conde22                 66
                                                    10x reference adata      4
CD16-positive, CD56-dim natural killer cell, human  10x reference adata      3
dtype: int64